Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bacterial symbiosis in Bactrocera oleae, an Achilles' heel for its pest control.

Identifieur interne : 000045 ( Main/Exploration ); précédent : 000044; suivant : 000046

Bacterial symbiosis in Bactrocera oleae, an Achilles' heel for its pest control.

Auteurs : Gaia Bigiotti [Italie] ; Patrizia Sacchetti [Italie] ; Roberta Pastorelli [Italie] ; Carol R. Lauzon [États-Unis] ; Antonio Belcari [Italie]

Source :

RBID : pubmed:32519794

Abstract

Investigations on microbial symbioses in Tephritidae have increased over the past 30 years owing to the potential use of these relationships in developing new control strategies for economically important fruit flies. Bactrocera oleae (Rossi)-the olive fruit fly-is a monophagous species strictly associated with the olive tree, and among all the tephritids, its symbionts are the most investigated. The bacterium Candidatus Erwinia dacicola is the major persistent resident endosymbiont in wild B. oleae populations. Its relationship with B. oleae has been investigated since being identified in 2005. This endosymbiont is vertically transmitted through generations from the female to the egg. It exists at every developmental stage, although it is more abundant in larvae and ovipositing females, and is necessary for both larvae and adults. Studying B. oleae-Ca. E. dacicola, or other B. oleae-microbe interactions, will allow us to develop modern biological control systems for area-wide olive protection and set an example for similar programs in other important food crops. This review summarizes the information available on tephritid-microbe interactions and investigates relationships among fruit flies, bacteria and host plants; however, its focus is on B. oleae and its strict association with Ca. E. dacicola to promote environmentally friendly control strategies for area-wide pest management.

DOI: 10.1111/1744-7917.12835
PubMed: 32519794


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bacterial symbiosis in Bactrocera oleae, an Achilles' heel for its pest control.</title>
<author>
<name sortKey="Bigiotti, Gaia" sort="Bigiotti, Gaia" uniqKey="Bigiotti G" first="Gaia" last="Bigiotti">Gaia Bigiotti</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence</wicri:regionArea>
<wicri:noRegion>University of Florence</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sacchetti, Patrizia" sort="Sacchetti, Patrizia" uniqKey="Sacchetti P" first="Patrizia" last="Sacchetti">Patrizia Sacchetti</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence</wicri:regionArea>
<wicri:noRegion>University of Florence</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pastorelli, Roberta" sort="Pastorelli, Roberta" uniqKey="Pastorelli R" first="Roberta" last="Pastorelli">Roberta Pastorelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Centre for Agriculture and Environment, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA-AA), Florence, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Research Centre for Agriculture and Environment, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA-AA), Florence</wicri:regionArea>
<wicri:noRegion>Florence</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lauzon, Carol R" sort="Lauzon, Carol R" uniqKey="Lauzon C" first="Carol R" last="Lauzon">Carol R. Lauzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, California State University, Hayward, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, California State University, Hayward</wicri:regionArea>
<wicri:noRegion>Hayward</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Belcari, Antonio" sort="Belcari, Antonio" uniqKey="Belcari A" first="Antonio" last="Belcari">Antonio Belcari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence</wicri:regionArea>
<wicri:noRegion>University of Florence</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32519794</idno>
<idno type="pmid">32519794</idno>
<idno type="doi">10.1111/1744-7917.12835</idno>
<idno type="wicri:Area/Main/Corpus">000022</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000022</idno>
<idno type="wicri:Area/Main/Curation">000022</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000022</idno>
<idno type="wicri:Area/Main/Exploration">000022</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bacterial symbiosis in Bactrocera oleae, an Achilles' heel for its pest control.</title>
<author>
<name sortKey="Bigiotti, Gaia" sort="Bigiotti, Gaia" uniqKey="Bigiotti G" first="Gaia" last="Bigiotti">Gaia Bigiotti</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence</wicri:regionArea>
<wicri:noRegion>University of Florence</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sacchetti, Patrizia" sort="Sacchetti, Patrizia" uniqKey="Sacchetti P" first="Patrizia" last="Sacchetti">Patrizia Sacchetti</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence</wicri:regionArea>
<wicri:noRegion>University of Florence</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pastorelli, Roberta" sort="Pastorelli, Roberta" uniqKey="Pastorelli R" first="Roberta" last="Pastorelli">Roberta Pastorelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Centre for Agriculture and Environment, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA-AA), Florence, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Research Centre for Agriculture and Environment, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA-AA), Florence</wicri:regionArea>
<wicri:noRegion>Florence</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lauzon, Carol R" sort="Lauzon, Carol R" uniqKey="Lauzon C" first="Carol R" last="Lauzon">Carol R. Lauzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, California State University, Hayward, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, California State University, Hayward</wicri:regionArea>
<wicri:noRegion>Hayward</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Belcari, Antonio" sort="Belcari, Antonio" uniqKey="Belcari A" first="Antonio" last="Belcari">Antonio Belcari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence</wicri:regionArea>
<wicri:noRegion>University of Florence</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Insect science</title>
<idno type="eISSN">1744-7917</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Investigations on microbial symbioses in Tephritidae have increased over the past 30 years owing to the potential use of these relationships in developing new control strategies for economically important fruit flies. Bactrocera oleae (Rossi)-the olive fruit fly-is a monophagous species strictly associated with the olive tree, and among all the tephritids, its symbionts are the most investigated. The bacterium Candidatus Erwinia dacicola is the major persistent resident endosymbiont in wild B. oleae populations. Its relationship with B. oleae has been investigated since being identified in 2005. This endosymbiont is vertically transmitted through generations from the female to the egg. It exists at every developmental stage, although it is more abundant in larvae and ovipositing females, and is necessary for both larvae and adults. Studying B. oleae-Ca. E. dacicola, or other B. oleae-microbe interactions, will allow us to develop modern biological control systems for area-wide olive protection and set an example for similar programs in other important food crops. This review summarizes the information available on tephritid-microbe interactions and investigates relationships among fruit flies, bacteria and host plants; however, its focus is on B. oleae and its strict association with Ca. E. dacicola to promote environmentally friendly control strategies for area-wide pest management.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32519794</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1744-7917</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Insect science</Title>
<ISOAbbreviation>Insect Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Bacterial symbiosis in Bactrocera oleae, an Achilles' heel for its pest control.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1744-7917.12835</ELocationID>
<Abstract>
<AbstractText>Investigations on microbial symbioses in Tephritidae have increased over the past 30 years owing to the potential use of these relationships in developing new control strategies for economically important fruit flies. Bactrocera oleae (Rossi)-the olive fruit fly-is a monophagous species strictly associated with the olive tree, and among all the tephritids, its symbionts are the most investigated. The bacterium Candidatus Erwinia dacicola is the major persistent resident endosymbiont in wild B. oleae populations. Its relationship with B. oleae has been investigated since being identified in 2005. This endosymbiont is vertically transmitted through generations from the female to the egg. It exists at every developmental stage, although it is more abundant in larvae and ovipositing females, and is necessary for both larvae and adults. Studying B. oleae-Ca. E. dacicola, or other B. oleae-microbe interactions, will allow us to develop modern biological control systems for area-wide olive protection and set an example for similar programs in other important food crops. This review summarizes the information available on tephritid-microbe interactions and investigates relationships among fruit flies, bacteria and host plants; however, its focus is on B. oleae and its strict association with Ca. E. dacicola to promote environmentally friendly control strategies for area-wide pest management.</AbstractText>
<CopyrightInformation>© 2020 Institute of Zoology, Chinese Academy of Sciences.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bigiotti</LastName>
<ForeName>Gaia</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4902-6987</Identifier>
<AffiliationInfo>
<Affiliation>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sacchetti</LastName>
<ForeName>Patrizia</ForeName>
<Initials>P</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7006-8516</Identifier>
<AffiliationInfo>
<Affiliation>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pastorelli</LastName>
<ForeName>Roberta</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-1278-7651</Identifier>
<AffiliationInfo>
<Affiliation>Research Centre for Agriculture and Environment, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA-AA), Florence, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lauzon</LastName>
<ForeName>Carol R</ForeName>
<Initials>CR</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-3043-4374</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, California State University, Hayward, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Belcari</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-5456-7887</Identifier>
<AffiliationInfo>
<Affiliation>Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Australia</Country>
<MedlineTA>Insect Sci</MedlineTA>
<NlmUniqueID>101266965</NlmUniqueID>
<ISSNLinking>1672-9609</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">IPM</Keyword>
<Keyword MajorTopicYN="N">Tephritid</Keyword>
<Keyword MajorTopicYN="N">bacterial symbiosis</Keyword>
<Keyword MajorTopicYN="N">esophageal bulb</Keyword>
<Keyword MajorTopicYN="N">olive fly</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32519794</ArticleId>
<ArticleId IdType="doi">10.1111/1744-7917.12835</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Augustinos, A.A., Kyritsis, G.A., Papadopoulos, N.T., Abd-Alla, A.M.M., Caceres, C. and Bourtzis, K. (2015) Exploitation of the medfly gut microbiota for the enhancement of sterile insect technique: use of Enterobacter sp. in larval diet-based probiotic applications. PLoS ONE, 10, 9. https://doi.org/10.1371/journal.pone.0136459</Citation>
</Reference>
<Reference>
<Citation>Augustinos, A.A., Tsiamis, G., Cáceres, C., Abd-Alla, A.M.M. and Bourtzis, K. (2019) Taxonomy, diet, and developmental stage contribute to the structuring of gut-associated bacterial communities in Tephritid pest species. Frontiers in Microbiology, 10, 2004.</Citation>
</Reference>
<Reference>
<Citation>Behar, A., Ben-Yosef, M., Lauzon, C.R., Yuval, B. and Jurkevitch, E. (2009) Structure and function of the bacterial community associated with the Mediterranean fruit fly. Insect Symbiosis, Vol. 3 (eds. K. Bourtzis & T.A. Miller), pp. 251-272. CRC Press, Boca Raton, USA.</Citation>
</Reference>
<Reference>
<Citation>Belcari, A., Sacchetti, P., Marchi, G. and Surico, G. (2003) La mosca delle olive e la simbiosi batterica. Informatore Fitopatologico, 9, 55-59.</Citation>
</Reference>
<Reference>
<Citation>Belcari, A. and Bobbio, E. (1999) L'impiego del rame nel controllo della mosca delle olive, Bactrocera oleae. Informatore Fitopatologico, 49, 52-55.</Citation>
</Reference>
<Reference>
<Citation>Belcari, A., Sacchetti, P., Rosi, M.C. and Del Pianta, R. (2005) Control of the olive fly (Bactrocera oleae) through the use of copper products in Central Italy. IOBC-WPRS Bulletin, 28, 45-48.</Citation>
</Reference>
<Reference>
<Citation>Ben-Ami, E., Yuval, B. and Jurkevitch, E. (2010) Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME Journal, 4, 28-37.</Citation>
</Reference>
<Reference>
<Citation>Ben-Yosef, M., Aharon, Y., Jurkevitch, E. and Yuval, B. (2010) Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. Proceedings of the Royal Society B-Biological Sciences, 277, 1545-1552.</Citation>
</Reference>
<Reference>
<Citation>Ben-Yosef, M., Pasternak, Z., Jurkevitch, E. and Yuval, B. (2014) Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. Journal of Evolutionary Biology, 27, 2695-2705.</Citation>
</Reference>
<Reference>
<Citation>Ben-Yosef, M., Pasternak, Z., Jurkevitch, E. and Yuval, B. (2015) Symbiotic bacteria enable olive fly larvae to overcome host defences. Royal Society Open Science, 2, 150170.</Citation>
</Reference>
<Reference>
<Citation>Bigiotti, G., Pastorelli, R., Belcari, A. and Sacchetti, P. (2019a) Symbiosis interruption in the olive fly: effect of copper and propolis on Candidatus Erwinia dacicola. Journal of Applied Entomology, 143, 357-364.</Citation>
</Reference>
<Reference>
<Citation>Bigiotti, G., Pastorelli, R., Guidi, R., Belcari, A. and Sacchetti, P. (2019b) Horizontal transfer and finalization of a reliable detection method for the olive fruit fly endosymbiont, Candidatus Erwinia dacicola. BMC Biotechnology, 19 (Suppl 2), 93.</Citation>
</Reference>
<Reference>
<Citation>Blow, F., Gioti, A., Starns, D., Ben-Yosef, M., Pasternak, Z., Jurkevitch, E. et al. (2017) Draft genome sequence of the Bactrocera oleae symbiont “Candidatus Erwinia dacicola.” Genome Announcements, 4, 1-2.</Citation>
</Reference>
<Reference>
<Citation>Cai, Z.H., Yao, Z.C., Li, Y.S., Xi, Z.Y., Bourtzis, K., Zhao, Z. et al. (2018) Intestinal probiotics restore the ecological fitness decline of Bactrocera dorsalis by irradiation. Evolutionary Applications, 11, 1946-1963.</Citation>
</Reference>
<Reference>
<Citation>Caleca, V. and Rizzo, R. (2007) Tests on the effectiveness of kaolin and copper hydroxide in the control of Bactrocera oleae (Gmelin). IOBC-WPRS Bulletin, 30, 111-117.</Citation>
</Reference>
<Reference>
<Citation>Caleca, V., Belcari, A. and Sacchetti, P. (2012) Lotta alla mosca delle olive in olivicoltura integrata e biologica. Protezione delle Colture, 3, 27-33.</Citation>
</Reference>
<Reference>
<Citation>Caleca, V., Lo Verde, G., Lo Verde, V., Palumbo Piccionello, M. and Rizzo, R. (2010) Control of Bactrocera oleae and Ceratitis capitata in organic orchards: use of clays and copper products. Acta Horticulturae, 873, 227-233.</Citation>
</Reference>
<Reference>
<Citation>Capuzzo, C., Firrao, G., Mazzon, L., Squartini, A. and Girolami, V. (2005) ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). International Journal of Systematic and Evolutionary Microbiology, 55, 1641-1647.</Citation>
</Reference>
<Reference>
<Citation>Dale, C. and Moran, N.A. (2006) Molecular interactions between bacterial symbionts and their hosts. Cell, 126, 453-465.</Citation>
</Reference>
<Reference>
<Citation>Dillon, R.J. and Dillon, V.M. (2004) The gut bacteria of insects: nonpathogenic interactions. Annual Review of Entomology, 49, 71-92.</Citation>
</Reference>
<Reference>
<Citation>Drew, R.A.I. and Lloyd, A.C. (1987) Relationship of fruit flies (Diptera: Tephritidae) and their bacteria to host plants. Annals of the Entomological Society of America, 80, 629-636.</Citation>
</Reference>
<Reference>
<Citation>Drew, R.A.I. and Lloyd, A.C. (1989) Bacteria associated with fruit flies and their host plants. Fruit flies: their biology, natural enemies and control. World Crop Pests, Vol. 3A (eds. A.S. Robinson & G. Hooper), pp. 131-140. Elsevier, Amsterdam.</Citation>
</Reference>
<Reference>
<Citation>Epsky, N.D., Heath, R.R., Dueben, B.D., Lauzon, C.R., Proveaux, A.T. and MacCollom, G.B. (1998) Attraction of 3-methyl-1-butanol and ammonia identified from Enterobacter agglomerans to Anastrepha suspensa. Journal of Chemical Ecology, 24, 1867-1880.</Citation>
</Reference>
<Reference>
<Citation>Ercolani, G.L. (1978) Pseudomonas savastanoi and other bacteria colonizing the surface of olive leaves in the field. Journal of General Microbiology, 109, 245-257.</Citation>
</Reference>
<Reference>
<Citation>Ercolani, G.L. (1991) Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microbial Ecology, 21, 35-48.</Citation>
</Reference>
<Reference>
<Citation>Estes, A.M., Hearn, D.J., Agrawal, S., Pierson, E.A. and Hotopp, J.C.D. (2018a) Comparative genomics of the Erwinia and Enterobacter olive fly endosymbionts. Scientific Reports, 8, 15936.</Citation>
</Reference>
<Reference>
<Citation>Estes, A.M., Hearn, D.J., Bronstein, J.L. and Pierson, E.A. (2009) The olive fly endosymbiont, “Candidatus Erwinia dacicola,” switches from an intracellular existence to an extracellular existence during host insect development. Applied and Environmental Microbiology, 75, 7097-7106.</Citation>
</Reference>
<Reference>
<Citation>Estes, A.M., Hearn, D.J., Burrack, H.J., Rempoulakis, P. and Pierson, E.A. (2012a) Prevalence of Candidatus Erwinia dacicola in wild and laboratory olive fruit fly populations and across developmental stages. Environmental Entomology, 41, 265-274.</Citation>
</Reference>
<Reference>
<Citation>Estes, A.M., Hearn, D.J., Nadendla, S., Pierson, E.A. and Hotopp, J.C.D. (2018b) Draft genome sequence of Erwinia dacicola, a dominant endosymbiont of olive flies. Microbiology Resource Announcements, 7, 1-2.</Citation>
</Reference>
<Reference>
<Citation>Estes, A.M., Nestel, D., Belcari, A., Jessup, A., Rempoulakis, P. and Economopoulos, A.P. (2012b) A basis for the renewal of sterile insect technique for the olive fly, Bactrocera oleae (Rossi). Journal of Applied Entomology, 136, 1-16.</Citation>
</Reference>
<Reference>
<Citation>Gavriel, S., Jurkevitch, E., Gazit, Y. and Yuval, B. (2011) Bacterially enriched diet improves sexual performance of sterile male Mediterranean fruit flies. Journal of Applied Entomology, 135, 564-573.</Citation>
</Reference>
<Reference>
<Citation>Girolami, V. (1973) Reperti morfo-istologici sulle batteriosimbiosi del Dacus oleae Gmelin e di altri Ditteri Tripetidi, in natura e negli allevamenti su substrati artificiali. Redia, 54, 269-293.</Citation>
</Reference>
<Reference>
<Citation>Gonçalves, F. and Torres, L. (2012) Effect of copper oxychloride on the olive infestation by Bactrocera oleae in Northeastern Portugal. Acta Horticulturae, 949, 333-340.</Citation>
</Reference>
<Reference>
<Citation>Granchietti, A., Camèra, A., Landini, S., Rosi, M.C., Librandi, M., Sacchetti, P. et al. (2007) Relationship between olive fly adults and epiphytic bacteria of the olive tree. IOBC-WPRS Bulletin, 30, 25-30.</Citation>
</Reference>
<Reference>
<Citation>Hagen, K.S. (1966) Dependence of the olive fly, Dacus oleae, larvae on symbiosis with Pseudomonas savastanoi for the utilization of olive. Nature, 209, 423-424.</Citation>
</Reference>
<Reference>
<Citation>Hamden, H., M'Saad Guerfali, M., Fadhl, S., Saidi, M. and Chevrier, C. (2013) Fitness improvement of mass-reared sterile males of Ceratitis capitata (Vienna 8 strain) (Diptera: Tephritidae) after gut enrichment with probiotics. Journal of Economic Entomology, 106, 641-647.</Citation>
</Reference>
<Reference>
<Citation>Hellmuth, H. (1956) Untersuchungen zur Bakteriensymbiose der Trypetiden (Diptera). Zeitschrift für Morphologie und Ökologie der Tiere, 44, 483-517.</Citation>
</Reference>
<Reference>
<Citation>Hosokawa, T. and Fukatsu, T. (2020) Relevance of microbial symbiosis to insect behavior. Current Opinion in Insect Science, 39, 91-100.</Citation>
</Reference>
<Reference>
<Citation>Jang, E.B. and Nishijima, K.A. (1990) Identification and attractancy of bacteria associated with Dacus dorsalis (Diptera: Tephritidae). Environmental Entomology, 19, 1726-1731.</Citation>
</Reference>
<Reference>
<Citation>Jose, P.A., Ben-Yosef, M., Jurkevitch, E. and Yuval, B. (2019) Symbiotic bacteria affect oviposition behavior in the olive fruit fly Bactrocera oleae. Journal of Insect Physiology, 117, 103917.</Citation>
</Reference>
<Reference>
<Citation>Kyritsis, G.A., Augustinos, A.A., Caceres, C. and Bourtzis, K. (2017) Medfly gut microbiota and enhancement of the sterile insect technique: similarities and differences of Klebsiella oxytoca and Enterobacter sp. AA26 probiotics during the larval and adult stages of the VIENNA 8D53+ Genetic Sexing Strain. Frontiers in Microbiology, 8, 2064.</Citation>
</Reference>
<Reference>
<Citation>Koskinioti, P., Ras, E., Augustinos, A.A., Tsiamis, G., Beukeboom, L.W., Caceres, C. et al. (2019) The effects of geographic origin and antibiotic treatment on the gut symbiotic communities of Bactrocera oleae populations. Entomologia Experimentalis et Applicata, 167, 197-208.</Citation>
</Reference>
<Reference>
<Citation>Kounatidis, I., Crotti, E., Sapountzis, P., Sacchi, L., Rizzi, A., Chouaia, B. et al. (2009) Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Applied and Environmental Microbiology, 75, 3281-3288.</Citation>
</Reference>
<Reference>
<Citation>Landini, S., Granchietti, A., Librandi, M., Camèra, A., Rosi, M.C., Sacchetti, P. et al. (2007) Behavioural responses of the olive fly, Bactrocera oleae, to chemicals produced by Pseudomonas putida in laboratory bioassays. IOBC-WPRS Bulletin, 30, 101-105.</Citation>
</Reference>
<Reference>
<Citation>Lauzon, C.R., Sjogren, R.E. and Prokopy, R.J. (2000) Enzymatic capabilities of bacteria associated with apple maggot flies: a postulated role in attraction. Journal of Chemical Ecology, 26, 953-967.</Citation>
</Reference>
<Reference>
<Citation>Lauzon, C.R. (2003) Symbiotic relationships of tephritids. Insect Symbiosis, Vol. 1 (eds. K. Bourtzis & T.A. Miller), pp. 115-129. CRC Press, Boca Raton, USA.</Citation>
</Reference>
<Reference>
<Citation>Lauzon, C.R., McCombs, S.D., Potter, S.E. and Peabody, N.C. (2009) Establishment and vertical passage of Enterobacter (Pantoea) agglomerans and Klebsiella pneumoniae through all life stages of the Mediterranean Fruit Fly (Diptera: Tephritidae). Annals of the Entomological Society of America, 102, 85-95.</Citation>
</Reference>
<Reference>
<Citation>Liscia, A., Angioni, P., Sacchetti, P., Poddighe, S., Granchietti, A., Setzu, M.D. et al. (2013) Characterization of olfactory sensilla of the olive fly: behavioral and electrophysiological responses to volatile organic compounds from the host plant and bacterial filtrate. Journal of Insect Physiology, 59, 705-716.</Citation>
</Reference>
<Reference>
<Citation>Luthy, P., Studer, D., Jaquet, F. and Yamvrias, C. (1983) Morphology and in vitro cultivation of the bacterial symbiote of Dacus oleae. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 56, 67-72.</Citation>
</Reference>
<Reference>
<Citation>MacCollom, G.B., Lauzon, C.R., Payne, E.B. and Currier, W.W. (1994) Apple maggot (Diptera: Tephritidae) trap enhancement with washed bacterial cells. Environmental Entomology, 23, 354-359.</Citation>
</Reference>
<Reference>
<Citation>MacCollom, G.B., Lauzon, C.R., Sjogren, R.E., Meyer, W.L. and Olday, F. (2009) Association and attraction of blueberry maggot fly Curran (Diptera: Tephritidae) to Pantoea (Enterobacter) agglomerans. Environmental Entomology, 38, 116-120.</Citation>
</Reference>
<Reference>
<Citation>Marchini, D., Rosetto, M., Dallai, R. and Marri, L. (2002) Bacteria associated with the oesophageal bulb of the medfly Ceratitis capitata (Diptera: Tephritidae). Current Microbiology, 44, 120-124.</Citation>
</Reference>
<Reference>
<Citation>Mazzini, M. and Vita, G. (1981) Identificazione submicroscopica del meccanismo di trasmissione del batterio simbionte in Dacus oleae (Gmelin) (Diptera, Trypetidae)-submicroscopic identification of the mechanism of transmission of the symbiotic bacterium in Dacus oleae (Gmelin) (Diptera, Trypetidae). Redia, 64, 277-301.</Citation>
</Reference>
<Reference>
<Citation>Moran, N.A. (2006) Symbiosis. Current Biology, 16, R866-R871.</Citation>
</Reference>
<Reference>
<Citation>Niyazi, N., Lauzon, C.R. and Shelly, T.E. (2004) Effect of probiotic adult diets on fitness components of sterile male Mediterranean fruit flies (Diptera: Tephritidae) under laboratory and field cage conditions. Journal of Economic Entomology, 97, 1570-1580.</Citation>
</Reference>
<Reference>
<Citation>Nobre, T. (2019) Symbiosis in sustainable agriculture: can olive fruit fly bacterial microbiome be useful in pest management? Microorganisms, 7, 238.</Citation>
</Reference>
<Reference>
<Citation>Noman, M.S., Liu, L., Bai, Z. and Li, Z. (2020) Tephritidae bacterial symbionts: potentials for pest management. Bulletin of Entomological Research, 110, 1-14.</Citation>
</Reference>
<Reference>
<Citation>Omar, S.H. (2010) Oleuropein in olive and its pharmacological effects. Scientia Pharmaceutica, 78, 133-154.</Citation>
</Reference>
<Reference>
<Citation>Pavlidi, N., Gioti, A., Wybouw, N., Dermauw, W., Ben-Yosef, M., Yuval, B. et al. (2017) Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. Scientific Reports, 7, 42633.</Citation>
</Reference>
<Reference>
<Citation>Petri, L. (1909) Ricerche sopra i batteri intestinali della Mosca olearia. Memorie della Regia Stazione di Patologia Vegetale, 1-129.</Citation>
</Reference>
<Reference>
<Citation>Poinar, G.O.J., Hess, R.T. and Tsitsipis, J.A. (1975) Ultrastructure of the bacterial symbiotes in the pharyngeal diverticulum of Dacus oleae (Gmelin) (Trypetidae; Diptera). Acta Zoologica, 56, 77-84.</Citation>
</Reference>
<Reference>
<Citation>Prophetou-Athanasiadou, D.A., Tzanakakis, M.E., Myroyannis, D. and Sakas, G. (1991) Deterrence of oviposition in Dacus oleae by copper hydroxide. Entomologia Experimentalis et Applicata, 61, 1-5.</Citation>
</Reference>
<Reference>
<Citation>Ras, E., Beukeboom, L.W., Caceres, C. and Bourtzis, K. (2017) Review of the role of gut microbiota in mass rearing of the olive fruit fly, Bactrocera oleae, and its parasitoids. Entomologia Experimentalis et Applicata, 164, 237-256.</Citation>
</Reference>
<Reference>
<Citation>Raza, M.F., Yao, Z., Bai, S., Cai, Z. and Zhang, H. (2020) Tephritidae fruit fly gut microbiome diversity, function and potential for applications. Bulletin of Entomological Research, 110, 423-437. https://doi.org/10.1017/S0007485319000853.</Citation>
</Reference>
<Reference>
<Citation>Rempoulakis, P., Dimou, I., Chrysargyris, A. and Economopoulos, A.P. (2014) Improving olive fruit fly Bactrocera oleae (Diptera: Tephritidae) adult and larval artificial diets, microflora associated with the fly and evaluation of a transgenic olive fruit fly strain. International Journal of Tropical Insect Science, 34, S114-S122.</Citation>
</Reference>
<Reference>
<Citation>Robacker, D.C., Martinez, A.J., Garcia, J.A. and Bartelt, R.J. (1998) Volatiles attractive to the Mexican fruit fly (Diptera: Tephritidae) from eleven bacteria taxa. The Florida Entomologist, 81, 497-508.</Citation>
</Reference>
<Reference>
<Citation>Robacker, D.C. and Lauzon, C.R. (2002) Purine metabolizing capability of Enterobacter agglomerans affects volatiles production and attractiveness to Mexican fruit fly. Journal of Chemical Ecology, 28, 1549-1563.</Citation>
</Reference>
<Reference>
<Citation>Robacker, D.C., Lauzon, C., Patt, J., Margara, F. and Sacchetti, P. (2009) Attraction of Mexican fruit flies (Diptera: Tephritidae) to bacteria: effects of culturing medium on odour volatiles. Journal of Applied Entomology, 133, 155-163.</Citation>
</Reference>
<Reference>
<Citation>Rosi, M.C., Sacchetti, P., Librandi, M. and Belcari, A. (2007) Effectiveness of different copper products against the olive fly in organic olive groves. IOBC-WPRS Bulletin, 30, 277-281.</Citation>
</Reference>
<Reference>
<Citation>Sacchetti, P., Ghiardi, B., Granchietti, A., Stefanini, F.M. and Belcari, A. (2014) Development of probiotic diets for the olive fly: evaluation of their effects on fly longevity and fecundity. Annals of Applied Biology, 164, 138-150.</Citation>
</Reference>
<Reference>
<Citation>Sacchetti, P., Granchietti, A., Landini, S., Viti, C., Giovannetti, L. and Belcari, A. (2008) Relationships between the olive fly and bacteria. Journal of Applied Entomology, 132, 682-689.</Citation>
</Reference>
<Reference>
<Citation>Sacchetti, P., Landini, S., Granchietti, A., Camèra, A., Rosi, M.C. and Belcari, A. (2007) Attractiveness to the olive fly of Pseudomonas putida isolated from the foregut of Bactrocera oleae. IOBC-WPRS Bulletin, 30, 37-42.</Citation>
</Reference>
<Reference>
<Citation>Sacchetti, P., Pastorelli, R., Bigiotti, G., Guidi, R., Ruschioni, S., Viti, C. et al. (2019) Olive fruit fly rearing procedures affect the vertical transmission of the bacterial symbiont Candidatus Erwinia dacicola. BMC Biotechnology, 19(Suppl 2), 91.</Citation>
</Reference>
<Reference>
<Citation>Savio, C., Mazzon, L., Martinez-Sanudo, I., Simonato, M., Squartini, A. and Girolami, V. (2012) Evidence of two lineages of the symbiont ‘Candidatus Erwinia dacicola’ in Italian populations of Bactrocera oleae (Rossi) based on 16S rRNA gene sequences. International Journal of Systematic and Evolutionary Microbiology, 62, 179-187.</Citation>
</Reference>
<Reference>
<Citation>Scarpati, M.L., Lo Scalzo, R. and Vita, G. (1993) Olea europaea volatiles attractive and repellent to the olive fruit fly (Dacus oleae, Gmelin). Journal of Chemical Ecology, 19, 881-891.</Citation>
</Reference>
<Reference>
<Citation>Sinno, M., Bezier, A., Vinale, F., Giron, D., Laudonia, S., Garonna, A.P. et al. (2020) Symbiosis disruption in the olive fruit fly, Bactrocera oleae (Rossi), as a potential tool for sustainable control. Pest Management Science. https://doi.org/10.1002/ps.5875.</Citation>
</Reference>
<Reference>
<Citation>Stamopoulos, C. and Tzanetakis, N.M. (1988) Bacterial flora isolated from the oesophageal bulb of the olive fruit fly Dacus oleae (Gmelin). Entomologia Hellenika, 6, 43-48.</Citation>
</Reference>
<Reference>
<Citation>Stathopoulou, P., Asimakis, E.D., Khan, M., Caceres, C., Bourtzis, K. and Tsiamis, G. (2019) Irradiation effect on the structure of bacterial communities associated with the oriental fruit fly, Bactrocera dorsalis. Entomologia Experimentalis et Applicata, 167, 209-219.</Citation>
</Reference>
<Reference>
<Citation>Tsiropoulos, G.J. (1983) Microflora associated with wild and laboratory reared adult olive fruit flies, Dacus oleae (Gmel.). Zeitschrift für Angewandte Entomologie, 96, 337-340.</Citation>
</Reference>
<Reference>
<Citation>Tsiropoulos, G.J. (1985) The importance of dietary nitrogen and carbohydrate in the nutrition of the adult olive fruit fly, Dacus oleae. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie, 4, 349-351.</Citation>
</Reference>
<Reference>
<Citation>Tzanakakis, M.E. and Lambrou, P.D. (1975) A preliminary field experiment on the inhibition of larval growth of Dacus oleae by streptomycin. Entomologia Experimentalis et Applicata, 18, 258-260.</Citation>
</Reference>
<Reference>
<Citation>Tzanakakis, M.E. and Stavrinides, A.S. (1973) Inhibition of development of larvae of the olive fruit fly, Dacus oleae (Diptera: Tephritidae), in olives treated with streptomycin. Entomologia Experimentalis et Applicata, 16, 39-47.</Citation>
</Reference>
<Reference>
<Citation>Tzanakakis, M.E. (1985) Considerations on the possible usefulness of olive fruit fly symbioticides in integrated control in olive groves. Integrated Pest Control in Olive-groves (eds. R. Cavalloro & A. Crovetti), pp. 386-393. A.A. Balkema, Rotterdam, The Netherlands.</Citation>
</Reference>
<Reference>
<Citation>Yamvrias, C., Panagopoulos, C.G. and Psallidas, P.G. (1970) Preliminary study of the internal bacterial flora of the olivefruit fly (Dacus oleae Gmelin). Annales de l'Institut phytopathologique Benaki, 9, 201-206.</Citation>
</Reference>
<Reference>
<Citation>Yao, M.Y., Zhang, H.H., Cai, P.M., Gu, X.H., Wang, D. and Ji, Q.G. (2017) Enhanced fitness of a Bactrocera cucurbitae genetic sexing strain based on the addition of gut-isolated probiotics (Enterobacter spec.) to the larval diet. Entomologia Experimentalis et Applicata, 162, 197-203.</Citation>
</Reference>
<Reference>
<Citation>Yuval, B. (2017) Symbiosis: gut bacteria manipulate host behaviour. Current Biology, 27, R746-R747.</Citation>
</Reference>
<Reference>
<Citation>Zindel, R., Gottlieb, Y. and Aebi, A. (2011) Arthropod symbioses: a neglected parameter in pest- and disease-control programmes. Journal of Applied Ecology, 48, 864-872.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="Bigiotti, Gaia" sort="Bigiotti, Gaia" uniqKey="Bigiotti G" first="Gaia" last="Bigiotti">Gaia Bigiotti</name>
</noRegion>
<name sortKey="Belcari, Antonio" sort="Belcari, Antonio" uniqKey="Belcari A" first="Antonio" last="Belcari">Antonio Belcari</name>
<name sortKey="Pastorelli, Roberta" sort="Pastorelli, Roberta" uniqKey="Pastorelli R" first="Roberta" last="Pastorelli">Roberta Pastorelli</name>
<name sortKey="Sacchetti, Patrizia" sort="Sacchetti, Patrizia" uniqKey="Sacchetti P" first="Patrizia" last="Sacchetti">Patrizia Sacchetti</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Lauzon, Carol R" sort="Lauzon, Carol R" uniqKey="Lauzon C" first="Carol R" last="Lauzon">Carol R. Lauzon</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000045 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000045 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32519794
   |texte=   Bacterial symbiosis in Bactrocera oleae, an Achilles' heel for its pest control.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32519794" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020